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Visible-light cleavage of DNA is an important subject for next- Liposomes were prepared by sonication of an aqueous dispersion
generation medical treatments such as photodynamic therapy. Manyof dimyristoylphosphatidylcholinel] and a cationic lipid2 in a
suggestions have been put forth to build “artificial photonu- 9:1 molar ratio with a cup-type sonicator at 50 W for 1 h. The
cleases™? Photosensitized DNA cleavage takes place via generation LMICg, was prepared by an exchange reaction between the
of “active oxygen”{singlet-oxygen {0,) and superoxide anion liposomes and the §y-CDx complex® by heating at 80C for
radical (G")} or direct electron transfer between DNA and a 1 h, as described in a previous papeOn the other hand, the
photoexcited sensitizer. Among candidate materials, fullerenes areLMIC ;o was prepared using an exchange reaction between the
anticipated as efficient visible light triplet sensitizers. However, liposomes and the gy-CDx complex® at as low as 30C for
their poor water solubility (poor absorption of light) has limited only 1 min (Scheme S1 and Figure S%)The LMICg, cannot be
their biochemical applications extremely. Several attempts have prepared using an exchange reaction at°@0 Therefore, the
been made to improve the solubility: introduction of water-soluble exchange rate in the/gsystem is much faster than that in thg,C
substituents;* mixing with water-soluble polymetsor lipid system. We suggest two explanations for these different rates: (i)
membrane$; and solubilization iny-cyclodextrin §-CDx)” or LMIC o is much more stable than LMIg and (i) the G y-CDx
water-soluble calixarend$.0f those options, we adopted a strategy complex is less stable than they&-CDx complex. Explanation
of dispersing unmodified fullerenes into lipid membranes for three (i) probably contributes little to this rate difference because the
reasons: (i) for their photoproduction abilities &, (energy selectivity between g and Gy is very small compared to that of
transfer) and anion radicals (electron transfer), unmodified fullerenes host molecules with a size-controlled cavifyHowever, supportive
are far superior to other sensitizers, including chemically modified evidence for explanation (ii) is that, in the absence of liposomes,
fullerenes!? (i) various surface-functionalized vesicles can be C; can be released from theCDx cavity more easily and self-
prepared by selecting lipids and they can exhibit target affinity as aggregate at 86C for 3 min28 Size distributions of the liposomes
drug carriersi and (jii) size control of vesicles is promising for  were studied using dynamic light scattering (DLS). Table S1
enhanced permeability and retention (EPR) effé&ts.Very summarizes the average diameters of all liposomes before and after
recently, we proposed that lipid-membrane-incorporated fullerenes the exchange reactions ofand Go. An initial concentration of
(LMICx) can be prepared easily by transferring fullerenes from Cy, and Gy in the fullerenesy-CDx complex, as determined by
water-soluble hostguest complexes to lipid membranes. Actually, measuring the absorbance of the solution at 332 and 381 nm (a
LMIC g was obtained through exchange witky@-CDx. It showed  specific extinction coefficient for the ¢gy-CDx complex ofess;

higher DNA cleavage ability than gy-CDx.1* However, the = 4.27 x 10* dm® mol~1 cm™! and the Gg-y-CDx complex ofezg;
optical density of LMIG, was still insufficient. Photoreactivity of = 3.80 x 10* dm?® mol~ cm2),” was 0.20 mM in an aqueous
LMICgo was not superlative despite the excellent photoreactivity selution (1.0 mL). After an aqueous solution of lipids (10 equiv of
of Ceo. Cs0) was added to the solution (1.0 mL, 2.00 mM), final concentra-

We now report on an advanced preparation and developedtions of the respective components were evaluated using integral
reactivities of a surface-functionalized, fullerene-enriched liposome. intensities of théH NMR spectruni? where [-CDx] = 1.02 mM,
A Crenriched liposome, LMIg, was obtained using the exchange  [Cq] = 0.10 mM, and [lipids]= 1.00 mM and §-CDx] = 1.90

from the unstable water-soluble complex of fullerengy & CDx. mM, [C7¢] = 0.10 mM, and [lipids}= 1.00 mM -CDx/Cs/lipids
Biological activities of LMIG, toward DNA were assayed under = 10.2:1:10 and/-CDx/Cyq/lipids = 19:1:10).

superlative system of DNA photocleavage. of the ColE1 supercoil plasmid. The DNA was cleaved neither under

dark conditions in the presence of these reagents (Figure 1, lanes
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We used a cationic liposome because cationic LpH@&s higher
DNA photocleaving ability than neutral and anionic LMK2*

" Nara Institute of Science and Technology.
*RIKEN.

4140 = J. AM. CHEM. SOC. 2007, 129, 4140—4141

3 and 5) nor under visible-light irradiation in the absence gf C
and Gy (Figure 1, lane 2). Under visible-light irradiationef >
350 nm) for 2 h, the LMIG, and LMIC;o values showed a distinct
DNA cleaving activity (lanes 4 and 6). In lane 4, about 26% of
supercoiled DNA (Form I) was converted to nicked DNA (Form
II) and linear DNA (Form IIl). Furthermore, in lane 6, the LMIC
showed markedly higher photocleaving performare83%) than
the LMICq. Figure 2 shows the photocleavage of DNA by the
LMIC o and LMIC;q as a function of irradiation time (Figures S2
S4). This reaction curve also shows that a quantitative DNA
conversion can be established by sufficient light illumination to
LMIC 7. The difference of buildup curves between LMGnd
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in biological, medicinal, and material chemistry because material-
incorporated @ can be prepared easily using the exchange method.
Applications of these systems are being studied in our laboratories.
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Figure 1. Agarose gel electrophoretic patterns of DNA nicked by LMIC
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30%)2! From these findings, it was revealed that LM§@s one days at room temperature.

of the most potent DNA cleavers compared with the conventional (17) (&) Haino, T.; Yanase, M.; Fukunaga, C.; Fukazawd,eftahedror2006
P p 62, 2025-2035. (b) Zheng, J. Y.; Tashiro, K,; Hirabayashi, Y.; Kinbara,
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DNA photocleavage ab"'ty of LMIGy is 3.5-fold hlgher than that of the 1 + 2 vesicle. This result indicates that alk{3vere transferred

of LMIC g in the same photon flux+(350 nm). In this aqueous photo- féom TtEey-CDx Icavi}y to tLipid rr?embranes to yield \i/rgcsailﬁle-in_c?rporated
; ; ; ; 70 These results also show that concentrations vesicles are
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potential of fullerenes, namely, (i) an affinity of vesicles for DNA  (20) (a) Rehm, D.; Weller, Alsr. J. Chem197Q 8, 259-271. (b) Matsumoto,
K.; Fujitsuka, M.; Sato, T.; Onodera, S.; Ito, @.Phys. Chem. B00Q

derived from their cationic surface, and (i) sufficient optical densi- 104 1163211638,

ties in the visible region. This is a case in which the product fulfilled  (21) A brown precipitation of the fzy-CDx complex was formed after
all the necessary conditions of aqueous fullerene photochemistry. photoirradiation for 2 h.

These findings have important implications for various applications JA070243S
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